Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection

Identifieur interne : 000266 ( Russie/Analysis ); précédent : 000265; suivant : 000267

Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection

Auteurs : RBID : Pascal:07-0317384

Descripteurs français

English descriptors

Abstract

An ultrafast pump-probe method based on differing polarization properties of neutral and charged excitons in semiconductor quantum dots (QDs) is employed to study carrier dynamics in InGaAs QDs grown in nominally undoped, modulation doped and p-i-n structures. We find that at low temperature even in the nominally undoped samples there are large fractions of charged dots. It is also demonstrated that for bipolar electrical injection there is a high probability of the independent capture of electrons or holes into the dots, resulting in dot charging. Voltage-control of the charged exciton population, created via a combination of electrical and optical excitation, which exhibits a long lived spin-polarization (or spin-memory) is demonstrated.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0317384

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection</title>
<author>
<name sortKey="Tartakovskii, A I" uniqKey="Tartakovskii A">A. I. Tartakovskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield, S3 7RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield, S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Savelyev, A V" uniqKey="Savelyev A">A. V. Savelyev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield, S3 7RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield, S3 7RH</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>Saint-Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Makhonin, M N" uniqKey="Makhonin M">M. N. Makhonin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield, S3 7RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield, S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Skolnick, M S" uniqKey="Skolnick M">M. S. Skolnick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield, S3 7RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield, S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mowbray, D J" uniqKey="Mowbray D">D. J. Mowbray</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield, S3 7RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield, S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nlaximov, M V" uniqKey="Nlaximov M">M. V. Nlaximov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>Saint-Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ustinov, V M" uniqKey="Ustinov V">V. M. Ustinov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>Saint-Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seisyan, R P" uniqKey="Seisyan R">R. P. Seisyan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>Saint-Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0317384</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0317384 INIST</idno>
<idno type="RBID">Pascal:07-0317384</idno>
<idno type="wicri:Area/Main/Corpus">007A11</idno>
<idno type="wicri:Area/Main/Repository">007D86</idno>
<idno type="wicri:Area/Russie/Extraction">000266</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Charge carrier injection</term>
<term>Excitons</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Pump probe method</term>
<term>Quantum dots</term>
<term>Semiconductor materials</term>
<term>Ternary compounds</term>
<term>Ultrafast process</term>
<term>Ultrafast spectroscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Exciton</term>
<term>Injection porteur charge</term>
<term>Point quantique</term>
<term>Composé binaire</term>
<term>Indium arséniure</term>
<term>Composé ternaire</term>
<term>Gallium arséniure</term>
<term>Processus ultrarapide</term>
<term>Semiconducteur</term>
<term>InAs</term>
<term>As In</term>
<term>As Ga In</term>
<term>InGaAs</term>
<term>7847</term>
<term>Méthode pompe sonde</term>
<term>Spectrométrie ultrarapide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An ultrafast pump-probe method based on differing polarization properties of neutral and charged excitons in semiconductor quantum dots (QDs) is employed to study carrier dynamics in InGaAs QDs grown in nominally undoped, modulation doped and p-i-n structures. We find that at low temperature even in the nominally undoped samples there are large fractions of charged dots. It is also demonstrated that for bipolar electrical injection there is a high probability of the independent capture of electrons or holes into the dots, resulting in dot charging. Voltage-control of the charged exciton population, created via a combination of electrical and optical excitation, which exhibits a long lived spin-polarization (or spin-memory) is demonstrated.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6471</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Ultrafast phenomena in semiconductors and nanostructure materials XI and semiconductor photodetectors IV : 22-24 January, 2007, San Jose, California, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TARTAKOVSKII (A. I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SAVELYEV (A. V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAKHONIN (M. N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SKOLNICK (M. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MOWBRAY (D. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NLAXIMOV (M. V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>USTINOV (V. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SEISYAN (R. P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TSEN (Kong-Thon F.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Sheffield</s1>
<s2>Sheffield, S3 7RH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>Saint-Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>64710J.1-64710J.9</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-6584-9</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000153572060110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0317384</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An ultrafast pump-probe method based on differing polarization properties of neutral and charged excitons in semiconductor quantum dots (QDs) is employed to study carrier dynamics in InGaAs QDs grown in nominally undoped, modulation doped and p-i-n structures. We find that at low temperature even in the nominally undoped samples there are large fractions of charged dots. It is also demonstrated that for bipolar electrical injection there is a high probability of the independent capture of electrons or holes into the dots, resulting in dot charging. Voltage-control of the charged exciton population, created via a combination of electrical and optical excitation, which exhibits a long lived spin-polarization (or spin-memory) is demonstrated.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H47</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>47</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>52</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>52</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>53</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>53</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Processus ultrarapide</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ultrafast process</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Proceso ultrarrápido</s0>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>62</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>62</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>7847</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Méthode pompe sonde</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Pump probe method</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Spectrométrie ultrarapide</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Ultrafast spectroscopy</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>204</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Ultrafast phenomena in semiconductors and nanostructure materials. Conference</s1>
<s2>11</s2>
<s3>USA</s3>
<s4>2007</s4>
</fA30>
<fA30 i1="02" i2="1" l="ENG">
<s1>Semiconductor photodetectors. Conference</s1>
<s2>4</s2>
<s3>USA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000266 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000266 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:07-0317384
   |texte=   Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024